488 research outputs found

    The challenge of integrating non-continuous processes-milk powder plant case study

    Get PDF
    The integration of non-continuous processes such as a milk powder plant present a challenge for existing process integration techniques. Current techniques are generally based on steady and continuous operation which for some industries is not the case. Milk production varies considerably during the year as dairy cows in New Zealand are grazed on pasture, which affects the scheduling and operation of plants on site. The frequency and duration of cleaning cycles and non-productive operating states can have a major affect on energy demand and the availability of heat sources and heat sinks. In this paper the potential for indirect heat transfer between the several plants using a heat recovery loop and stratified tank at a typical New Zealand dairy factory is investigated. The maximum amount of heat recovery is calculated for a range of recirculation loop temperatures. The maximum amount of heat recovery can be increased considerably if the temperature of the hot fluid in the recirculation loop is varied depending on which condition the site is operating under

    Integrating heat recovery from milk powder spray dryer exhausts in the dairy industry

    Get PDF
    Heat recovery from milk powder spray dryer exhausts has proven challenging due to both economic and thermodynamic constraints. Integrating the dryer with the rest of the process (e.g. evaporation stages) can increase the viability of exhaust recovery. Several potential integration schemes for a milk powder plant have been investigated. Indirect heat transfer via a coupled loop between the spray dryer exhaust and various heat sinks were modeled and the practical heat recovery potential determined. Hot utility use was reduced by as much as 21% if suitable heat sinks are selected. Due to high particle loading and operating temperatures in the particle sticky regime, powder deposition in the exhaust heat exchanger is perhaps the greatest obstacle for implementing heat recovery schemes on spray dryers. Adequate cleaning systems are needed to ensure continuous dyer operation

    Area targeting and storage temperature selection for heat recovery loops

    Get PDF
    Inter-plant heat integration across a large site can be achieved using a Heat Recovery Loop (HRL). In this paper the relationship between HRL storage temperatures, heating and cooling utility savings (heat recovery) and total HRL exchanger area is investigated. A methodology for designing a HRL based on a ΔTmin approach is compared to three global optimisation approaches where heat exchangers are constrained to have either the same Number of Heat Transfer Units (NTU), Log-Mean Temperature Difference (LMTD) or no constraints (actual global optimum). Analysis is performed using time averaged flow rate and temperature data. Attention is given to understanding the actual temperature driving force of the HRL heat exchangers compared to the apparent driving force as indicated by the composite curves. The cold storage temperature is also varied to minimise the total heat exchanger area. Results for the same heat recovery level show that the ΔTmin approach is effective at minimising total area to within 5 % of the unconstrained global optimisation approach. The study also demonstrates the efficiency of the ΔT min approach to HRL design compared to the other methods which require considerable computational resources

    Integration of solar heating into heat recovery loops using constant and variable temperature storage

    Get PDF
    Solar is a renewable energy that can be used to provide process heat to industrial sites. Solar is extremely variable and to use it reliably thermal storage is necessary. Heat recovery loops (HRL) are an indirect method for transferring heat from one process to another using an intermediate fluid (e.g. water, oil). With HRL’s thermal storage is also necessary to effectively meet the stop/start time dependent nature of the multiple source and sink streams. Combining solar heating with HRL’s makes sense as a means of reducing costs by sharing common storage infrastructure and pipe transport systems and by lowering nonrenewable hot utility demand. To maximise the value of solar in a HRL, the means of controlling the HRL needs to be considered. In this paper, the HRL example and design method of Walmsley et al. (2013) is employed to demonstrate the potential benefits of applying solar heating using the HRL variable temperature storage (VTS) approach and the conventional HRL constant temperature storage (CTS) approach. Results show the VTS approach is superior to the CTS approach for both the non-solar and solar integration cases. When the pinch is around the hot storage temperature the CST approach is constrained and the addition of solar heating to the HRL decreases hot utility at the expenses of increased cold utility. For the VTS approach the hot storage pinch shifts to a cold storage pinch and increased heat recovery is possible for the same exchanger area without solar. With solar the VTS approach can maintain the same heat recovery while also reducing hot utility still further due to the presence of solar, but only with additional area. When the pinch is located around the cold storage temperature, solar heating can be treated as an additional heat source and the benefits of CTS and VTS are comparable

    An investigation of milk powder deposition on parallel fins

    Get PDF
    One method to reduce the energy consumption of industrial milk spray dryers is to recover waste heat from the exhaust dryer air. A significant challenge associated with this opportunity is the air contains a small amount of powder that may deposit on the face and surfaces of a recuperator. This paper introduces a novel lab based test that simulates powder deposition on a bank of parallel plate fins at exhaust dryer air conditions. The fin bank acts like the face of a typical finned tube row in a recuperator. The aim of this study is to look at how deposition on the front of fins is affected by the air conditions. Results show similar characteristics to other milk powder deposition studies that exhibit a dramatic increase in deposition once critical stickiness levels are reached. As powder deposits on the face of the fins, the pressure drop across the bank increases until eventually an asymptote occurs, at which point the rates of deposition and removal are similar. For very sticky conditions, deposition on the face of the fins can cause a rise in the pressure drop by as much as 65%. The pressure drop has also been successfully related to the percentage of open frontal area of the fins with and without deposition. Deposition inside and at the rear of the fin bank was found to be minimal

    Design and operation methods for better performing heat recovery loops

    Get PDF
    Inter-plant integration via a heat recovery loop (HRL) is an economic method for increasing total site process energy efficiency of semi-continuous processes. Results show that both the constant storage temperature approach and variable storage temperature approach have merit. Depending on the mix of source and sink streams attached, it may be advantageous to change the operation of an existing HRL from a constant temperature storage to a variable temperature storage. To realise the full benefits of this change in operation, a redistribution of the existing heat exchanger area may be needed

    Importance of understanding variable and transient energy demand in large multi-product industrial plants for process integration

    Get PDF
    There have been some news releases claiming that Professor Henle in Germany has found the chemical identity of UMF, and that in future chemical analysis will be used instead of assays of antibacterial activity to indicate the level of UMF in manuka honey. Both of these claims are misleading. Because the level of active substance in manuka honey is an unreliable indication of the level of antibacterial activity and can be very misleading, it is hard to see any commercial advantage for it to be used to indicate antibacterial activity other than if someone wanted to fool the consumer into thinking that the higher numbers are giving them a level of antibacterial activity that is far higher than they are really getting

    Options for solar thermal and heat recovery loop hybrid system design

    Get PDF
    Integration of solar thermal energy into low temperature pinch processes, like dairy and food and beverage processes is more economic when combined with a Heat Recovery Loop (HRL) to form a hybrid inter-plant heat recovery system. The hybrid system shares common infrastructure and improves solar heat utilisation through direct solar boosting of the HRL intermediate fluid’s temperature and enthalpy either through parallel or series application. The challenge of dealing with variable solar energy supply is less of a problem in the hybrid system because the HRL with its associated storage acts as an enthalpy buffer which absorbs temperature and flow rate fluctuations on both the heat supply (including solar) and heat demand side simultaneously. Three options for integrating solar thermal directly into HRLs are applied to a large multi-plant dairy case study to demonstrate the hot utility savings potential of the Solar-HRL hybrid system. HRL performance with Variable Temperature Storage (VTS) and solar is dynamically modelled with historical plant data. The series configuration is shown to be consistently better than parallel configuration for the same thermal storage volumes and similar heat exchanger areas

    Area targeting and storage temperature selection for heat recovery loops

    Get PDF
    Inter-plant heat integration across a large site can be achieved using a Heat Recovery Loop (HRL). In this paper the relationship between HRL storage temperatures, heating and cooling utility savings (heat recovery) and total HRL exchanger area is investigated. A methodology for designing a HRL based on a ΔTmin approach is compared to three global optimisation approaches where heat exchangers are constrained to have either the same Number of Heat Transfer Units (NTU), Log-Mean Temperature Difference (LMTD) or no constraints (actual global optimum). Analysis is performed using time averaged flow rate and temperature data. Attention is given to understanding the actual temperature driving force of the HRL heat exchangers compared to the apparent driving force as indicated by the composite curves. The cold storage temperature is also varied to minimise the total heat exchanger area. Results for the same heat recovery level show that the ΔTmin approach is effective at minimising total area to within 5 % of the unconstrained global optimisation approach. The study also demonstrates the efficiency of the ΔT min approach to HRL design compared to the other methods which require considerable computational resources

    Optimal waste stream discharge temperature selection for dryer operations using thermo-economic assessment

    Get PDF
    A typical drying process that has liquid and gas discharge streams has been analysed and the impact of selecting various combinations of soft temperatures on heat recovery, utility targets, area targets, capital cost and total cost is reported. The method is based on the plus-minus principle and traditional pinch analysis methods for utility, area and capital cost targeting with the modification of using a ΔT contribution. Results show that there is significant benefit from optimising discharge temperatures for total cost. To achieve minimum energy consumption and total cost, heat recovery from the dryer exhaust air is necessary. Heat recovery from liquid heat sources is shown to be preferable over gas streams due to a higher film coefficient resulting in less heat exchanger area and capital cost. There is also value in making process modifications, such as combining streams or removing small streams to be solely heated by utility, to reduce the number of network heat exchangers. For the best case, the discharge temperatures of the leaving streams are 18.0 °C for water condensate (liquid stream) and 52.4 °C for the exhaust air (gas stream)
    • 

    corecore